Everything can be expressed in numbers, said Alan Turing and Kurt Gödel when they were thinking up methods to come to mathematical statements and proofs – about mathematical statements and proofs. Turing sought a systematic approach to tackle Hilbert’s Entscheidungsproblem, while Gödel used his eponymous numbering system to prove his own incompleteness theorems. Which happened to constitute a negative proof to the same Eintscheidungsproblem. You can go back one post if you are interested in the particulars.
In that previous post, I have already attributed the ascent of the universal automata – computers – to this approach. Now I will show how this same approach enabled the mathematical treatment of language, giving birth to the processing of human languages on computers.